Problems we solve
Software systems are growing increasingly complex, and their reliability has never been more important. Traditional testing and debugging techniques are insufficient. Here are just a few of the problems with legacy approaches to software quality, and how Antithesis addresses them.
Bugs are hard to reproduce
Problems in complex systems often depend on particular network, timing, or hardware conditions. The same tests performed on the same system, under seemingly similar conditions, might never reproduce the problem, because not all contributing factors are known or controllable.
Perfect reproducibility
Our testing environment is deterministic, so all bugs found in Antithesis are always reproducible, no matter how complex or rare. This means your engineers don't have to spend weeks trying to reproduce a flaky bug or a rare production issue.
Unknown unknowns can't be found
Manually written tests (unit tests, integration tests, etc.) mostly find problems anticipated by the authors of the tests. But software systems have many problems not anticipated by their designers.
Unknown unknowns are discovered
Antithesis explores your software in novel ways, so it finds bugs that your developers didn't go looking for. This makes your software more reliable, because it won't be brought down by unforeseen situations.
Debugging is hard
Diagnosing and fixing bugs in complex systems is difficult, because of the non-deterministic nature of networks and hardware. Standard approaches require lots of skill (and luck) to reproduce a bug, and to identify its cause among the many components of the system.
Debugging is easy
Antithesis performs all testing in a deterministic environment, so the exact path that led to a bug always can be reproduced and analyzed. Instrumentation can be added at interesting points, and artifacts such as log files, core dumps, and backtraces can be retrieved at any point, from any component of the system. Even the most complex bugs can be rapidly diagnosed, leading to quick fixes.
Old bugs are hard to diagnose
A lack of proper testing can let bugs enter production, but sometimes they don't cause a problem for months or years. Once they act up, these latent bugs are notoriously expensive to diagnose, because so much has changed since they were introduced.
New bugs are easy to fix
Antithesis continuously tests new versions of your software, and bugs are found soon after they're introduced. Finding bugs right away makes them easier to fix, because you know what code is responsible. That means your team spends less time chasing obscure bugs, and more time building.
Fixes are uncertain
Even when a bug has been diagnosed and a fix applied, it can be difficult to verify whether the fix has really eliminated the bug, and difficult to be sure it hasn't introduced a new one.
Confident fixes
Antithesis can recreate scenarios similar to the one that led to the discovery of a bug. Once a fix has been applied, it can be tested in these scenarios to verify whether the fix actually eliminated the bug. We can also exhaustively test the fixed version of the software, to make sure no new problems were introduced.
Testing is time-intensive
Traditional software testing relies on valuable software engineers spending 20-40% of their time manually writing, maintaining and running tests.
Less time testing is more time building
Antithesis autonomously searches your software for problems, so your developers can spend less time writing and maintaining tests. Our powerful debugging tools make fixing the bugs we find much faster as well. This means your team can spend more of their time improving your software, and less of their time testing it.
End-to-end testing is infrequent
The most important test of a complex system is that the entire system functions together properly. Tests of entire systems are difficult and expensive to set up, so teams frequently test individual components instead.
End-to-end testing is the default
Antithesis tests your entire software system together, so all tests are end-to-end tests by default. This finds problems that only arise when multiple components interact. We find these problems early in the development process, saving time and averting outages.